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Figure 1. The WITT device.

Summary

This work considers the design of a wave energy converter employing

the WITT device: a machine that is able to convert motion in all 6 de-

grees of freedom into electrical power. Various designs for housing the

WITT device inside a buoy are investigated with the aim of converting

the forcing from low-frequency ocean waves to a higher-frequency mo-

tion at which the WITT generates power most effectively. By modelling

the rigid-body motion of a buoy in response to a provided ocean wave

forcing and the dynamics of the internal mechanisms within the buoy,

we explore how nonlinear oscillation dynamics may achieve the desired

frequency amplification.

1 Introduction

The WITT (“Whatever Input to Torsion Transfer”) is a unique device that converts

oscillations in all 6 degrees of freedom (translation and rotation in 3 dimensions) into

electrical power through the use of a pendulum and gearbox mechanism. Such a device

may be employed as a wave energy converter [6], enabling the ongoing generation of

energy at sea, to be used for example, to power offshore sensors and monitoring devices.

This is achieved by mounting the WITT within a buoy.

Previous experimental results [2] found that the WITT produces power most effectively

when excited at or above its resonant frequency of 1.2 Hz. This frequency is several times

higher than typical frequencies associated with the power spectrum of ocean waves, mean-

ing that frequency amplification is required in order for the WITT to convert wave energy

effectively. Previous modelling has considered the use of counterweights or a system of

springs in order to achieve this desired frequency amplification [2, 6], or the placement of

the WITT underwater to utilise vortex-induced vibrations [3, 16]. Our research further

considers the means by which buoy design may be optimised in order to achieve the

effective conversion of wave energy by the WITT.

The goal of our modelling is to design a mechanism by which the lower-frequency forc-
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Figure 2. Flowchart of modelling approach.

ing associated with ocean waves may be translated into the higher-frequency oscillations

required for the WITT device to function effectively. We aim to achieve this frequency

amplification through the design of the buoy in which the WITT device is embedded.

This could be achieved through designing a buoy of a certain shape that will respond

nonlinearly to forcing by ocean waves, or through some internal mechanism that the

WITT device is moved about within the buoy.

Our modelling approach therefore breaks into several distinct levels, shown in Fig-

ure 2. Firstly, we require a realistic parameterisation of the frequency, amplitude, and

wavelength of ocean waves. This is then used to force a model of rigid-body buoy mo-

tion that determines the vertical and angular displacement experienced by the buoy. If

the frequency amplification achieved at this stage is insufficient, an internal mechanism

within the buoy must be forced according this motion. Finally, this mechanism imparts

some motion to the WITT device itself. The mechanism by which WITT device converts

motion into power has been modelled previously [2, 3, 6], and we regard this stage as a

solved problem.

A more complete model should also incorporate feedback from an internal mechanism

onto the rigid-body motion of the buoy. However, in this study we ignore these effects

for simplicity.

2 Modelling waves in the ocean

Ultimately, our model requires a mathematical description of waves in the ocean for a

typical use case of the WITT device as an input. An exact parameterisation of ocean

waves across the use cases of the WITT is impossible because the dynamics depend

on many things, such as weather conditions and ocean depth. Nevertheless, we need

some characterisation of the motion of the ocean surface, including the tilt, and its

horizontal and vertical displacement. To achieve this, we combine linear wave theory

with observational surface height data from the Pacific ocean [8].
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2.1 Linear free-surface wave theory

There is a standard theory describing linearised free-surface gravity waves on an ocean

of uniform finite depth and infinite horizontal extent (see, for example, [12]). Upon mak-

ing the assumption that the wave height is small compared with both the wavelength

and ocean depth, the solution for the free surface perturbation in one dimensions is a

superposition of harmonic waves of the form

ζ(x, t) =

∫ ∞

0

A(k) sin(kx− ωt) dk , (2.1)

where x is a horizontal coordinate, t is time, A is the (vertical) wave amplitude, k is

the wavenumber and ω is the angular frequency. The dispersion relation, linking the

frequency and wavenumber, is given by

ω2 = gk tanh(kD) , (2.2)

where D is the depth of the ocean and g is the acceleration due to gravity. For a given

wavenumber, the vertical motion has amplitude A(k), while the horizontal motion has

amplitude A(k) coth(kD). The gradient of the free surface is given by ∂ζ/∂x, and so has

amplitude A(k)k.

There are two limiting cases. If kD ≫ 1, then tanh(kD) ∼ 1 and the dispersion

relation becomes

ω2 = gk . (2.3)

This is known as the deep-water limit. In this case, the fluid parcels oscillate in a circular

motion, with equal horizontal and vertical amplitudes. Conversely, if kD ≪ 1 (i.e., the

wavelength is much larger than the ocean depth), then tanh(kD) ∼ kD and the dispersion

relation becomes

ω2 = gDk2 . (2.4)

This is known as the shallow-water limit. In this case, the fluid particles oscillate following

elliptical paths with a larger horizontal displacement than vertical. It is common to

describe ocean waves using the (non-angular) frequency ν = 2πω, wavelength λ = k/2π,

and wave height H = 2A.

Given a frequency ω (or ν) and ocean depth D, to solve for the wavenumber k (or

wavelength λ), we can write κ = kD, and then rearrange (2.2) to give

κ tanhκ =
ω2D

g
. (2.5)

If ω2D/g is large, then (2.5) gives that κ must be large, which puts us in the deep-

water limit, meaning we can make use of the approximation (2.3). If ω2D/g is small,

then κ must be small. Hence, we are in the shallow-water limit and can make use of the

approximation (2.4). If neither case applies, then we must solve the full transcendental

equation (2.5) for κ in order to recover the wavenumber k.
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Figure 3. Power spectrum of buoy data, showing the frequency of vertical oscillations

under large, medium and small amplitude waves.

2.2 Ocean wave data

Using vertical displacement data [8] measured from a buoy in the Pacific for large,

medium, and small amplitude waves at 0.1 second intervals for a 10-minute duration,

we use the discrete Fourier transform to determine the peak frequencies of ocean forcing

along with the corresponding amplitudes. The power spectrum is shown in Figure 3. We

find peaks around 0.15, 0.3, and 0.45 Hz. Therefore, we approximate this forcing as the

sum of three sinusoids.

From this data, we wish to compute representative frequencies and amplitudes of the

vertical and tilt motion of the ocean surface. With a typical offshore ocean depth of

D ≈ 100 m we have

ω2D

g
=

(2πν)2D

g
≈ 35 , (2.6)

which we consider large, and thus we are in the deep-water limit. For open ocean, the

value of D would be larger and the same limit would apply. This means that dispersion

relation can be approximated by (2.3), hence the wavenumber is

k =
ω2

g
=

(2πν)2

g
≈ 0.36 m−1 , (2.7)

and then the wavelength is

λ =
2π

k
≈ 18 m . (2.8)

The amplitudes of the horizontal and vertical motion of the fluid particles on the free

surface are both A ≈ 1 m [8]. The amplitude of the oscillation in the gradient of the

surface is Ak ≈ 0.36. This gives the amplitude in the oscillation in the angle of the
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surface as

σmax = tan−1(Ak) ≈ 0.35 . (2.9)

We note that the possible use cases of the WITT are in theory highly diverse, so that the

above values represent a particular case under fairly typical conditions. However, there

is scope for a buoy to be deployed in a range of weather conditions, which would produce

different wave amplitudes A.

3 Nonlinear oscillators to produce frequency escalation

The fundamental issue in this project is to take the natural frequency of the waves in

the local environment, whether that be a lake, a bay, or open ocean, and design a system

that will excite oscillations at a higher frequency than the forcing frequency. It is well

known that in a linear system, the response will ultimately be at the same frequency

as the input. In order to produce a higher frequency output than a the natural input

frequency requires a nonlinearity in the system.

A classical nonlinear equation that can demonstrate this capacity is the so-called “Duff-

ing’s equation” [7]. One mechanical system that produces a response described by this

equation is that studied by Duffing himself, but it is also seen in several different me-

chanical spring-mass systems and in the oscillations of a long beam. In the “Duffing

Oscillator” [7], the restoring force is proportional to the cube of the displacement, x(t),

resulting in the equation

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x+ ηx3 = F cosωt, (3.1)

where γ is the coefficient of damping, ω0 is the natural frequency of the equivalent linear

system, i.e. that with η = 0 and F = 0, η is the coefficient of the nonlinear restoring

force, and F is the amplitude of the forcing. There is a vast literature discussing the

many aspects and behaviour of such systems, see for example [1, 11].

The most important feature of this work is the frequency response of the system for

different values of forcing. Figure 4 shows a numerical solution to (3.1) with a response

that becomes periodic (solid lines) after some initial transients, with clearly higher fre-

quency oscillations occurring than the original forcing (dashed line). Also indicated is

the power spectrum indicating the response at different frequencies. The leftmost spike

is that for the frequency of the forcing, and there are clearly responses at higher values

close to the harmonics of the natural frequency. At some values of the parameters the

response is chaotic, but importantly the frequency response retains a similar escalation,

albeit slightly spread out.

The frequency response of the system for any set of parameters can be obtained by

assuming a solution for the displacement, x(t) of the form

x(t) = A(ω) cos(ωt), (3.2)

and then determining the amplitude of each frequency in the Fourier decomposition. Full
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Figure 4. Displacement and power spectrum for a simulation of the Duffing equation (3.1)

with γ = 0.1, F = 10, and ω = 0.75. In (a) the solid lines are the displacement and the

dashed line is the original forcing function.

details can be found in [11] and the resulting approximate frequency response is given by[(
ω2 − ω2

0 −
3

4
ηA(ω)2

)2

+ (2γω)2

]
A(ω)2 = F 2. (3.3)

It is notable that this function is multiple-valued for many values of the parameters and

hence it is possible to produce a multi-frequency response. Substituting values for the

parameters for a particular system will provide the amplitude of the response of each

forcing frequency.

Therefore, insights from this model can be used for designing an appropriate system

within the WITT device. How this system or one with similar properties can be designed

in practice is the subject of the remainder of this report.

4 Buoy dynamics in sea water

Before considering the design of an internal nonlinear oscillator, we must first determine

the response of the buoy as a whole to ocean wave forcing. The resulting motion may

then be used to force a model of internal buoy dynamics. We assume a homogeneous,

cylindrical buoy, having mass M , height L, diameter W , and base area S. We take z to

be the depth of the centre of mass in the water. Then, at rest, we have

M g = ρwS(d+ z), (4.1)

where d = L/2, ρw is the density of water, and g is gravity. When the buoy is tilted

by an angle, the volume of the buoy under water remains S(d + z). This can be shown
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Figure 5. Parametrisation of a buoy. (a) buoy at rest, (b) rotated buoy, (c) rotated buoy

under a wave.

graphically by noticing in Figure 5b that the volume under water above the green line

can be “moved” to the area above the water on the left, restoring the original profile of

the buoy.

To compute the dynamical equation, we use the Lagrangian formalism. Sea waves will

move the buoy vertically by an amount A, and the sea surface will be at an angle σ to

the horizontal. The “plunging” distance between the water surface and the centre of the

buoy is

Z = A− z + Z0, (4.2)

where

Z0 =
M g

S
− L

2
(4.3)

is the “plunging” distance at rest. The potential energy of the buoy is then

V = M g z − 1

2
gρwS(d+ Z)2 +

kw
2
(θ − σ)2. (4.4)

The second term corresponds to the potential energy needed to submerge the buoy in

water. In addition, we add the third term to couple the tilting of the buoy, given by θ, with

the slope of the water surface. For a cylindrical buoy, the angle between the water surface

is not affected by how much it is immersed in water, but for other shapes it generally

will be. This third term is a Hooke’s law style potential with ‘spring constant’ kw.

The kinetic energy of the buoy is

T =
M

2

(
dz

dt

)2

+
J

2

(
dθ

dt

)2

, (4.5)

where J is the moment of inertia of the buoy around the horizontal axis going through

its centre of mass. For a homogeneous cylinder of radius r, we have

J(L, r) =
1

4
Mr2 +

1

3
M L2

= πρ

(
1

4
Lr4 +

1

3
L3 r2

)
, (4.6)
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where ρ is density. For a hollow cylinder of thickness ϵ, we have

Jhc = J(L, r)− J(L− ϵ, r − ϵ). (4.7)

The Lagrangian is given by

L = T − V. (4.8)

Guided by §2.2, we assume that the incoming ocean waves are of the form

A(t, x) =
∑
i

ai sin

(
2π

(
νit−

x

λi

)
+ ϕi

)
. (4.9)

Then

σ(t, x) = −
∑
i

tan−1

(
2πai
λi

cos

(
2π(νit−

x

λi

)
+ ϕi

)
, (4.10)

which we average over the width of the buoy by approximating

σ(t, x) ≈ 1

3

(
σ
(
t,− 1

2W
)
+ σ(t, 0) + σ

(
t, 1

2W
))

. (4.11)

The Lagrange equations for a wave of the form (4.9) are

d2z

dt2
= −g +

gρwS

M

(
d+ (Z0 − z +A) cos(θ)

)
cos(θ)− γz

dz

dt
,

d2θ

dt2
= −gρwS

J

(
d+ (Z0 − z +A) cos(θ)

)
(Z0 − z +A) sin(θ)− k(θ − σ)

J
− γθ

dθ

dt
, (4.12)

where we have added friction terms with damping γz and γθ to take into account the

friction due to water.

When there is no wave, no tilting of the buoy, and no friction, the equation governing

the depth of the buoy is

d2z

dt2
= −g +

gρwS

M

(
L

2
+ (Z0 − z)

)
= −gρwS

M
z. (4.13)

Therefore, the bobbing frequency of the buoy is

ν =
1

2π

√
gρwS

M
. (4.14)

We perform simulations for a hollow cylinder using the parameters listed in Table 1.

With these parameters, the natural bobbing frequency for such a buoy is ν = 0.842 Hz.

If we excite the buoy with a monochromatic wave of frequency νω = 0.15 Hz and wave

length 10 m, so that the buoy bobs about and swings, then we observe the frequency

spectrum for the vertical motion shown in Figure 6. When excited by a superposition of

waves, similar to the one observed at sea (see Figure 3), we see, unsurprisingly, that the 3

frequencies appear in the spectrum, as shown in Figure 7. We notice that the rotational

oscillations are excited at frequencies higher than the forcing frequencies, but not by a

large amount.
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Table 1. The parameters used for the buoy dynamics.

Parameter Description Value Units

L Height of the buoy 0.5 m

rb = W/2 Radius of the buoy 0.5 m

ϵ Thickness of the buoy 0.0194 m

kw Restoring “spring coefficient” 50 J

M Mass of the buoy 275 kg

γz Damping coefficient 0.3 s−1

γθ Damping coefficient 0.3 s−1

J Moment of inertia of the buoy 3.057 kg m2
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Figure 6. Vertical and rotational oscillation spectra for the buoy excited by a monochro-

matic wave of frequency ν = 0.15 Hz.
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Figure 7. Vertical and rotational oscillations spectra for the buoy excited by a superpo-

sition of waves of frequencies 0.15 Hz, 0.3 Hz, and 0.44 Hz.
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Figure 8. Horizontal spectrum of oscillation of the WITT with a cubic restoring force

and excited by a superposition of waves of frequency 0.15 Hz, 0.3 Hz and 0.44 Hz. The

spring constant is kb = 104 m−2 s−2.
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Figure 9. WITT on a sliding rail inside the buoy.

5 Perpendicular spring oscillator

To generate higher frequencies than the excitation frequency, one must use a nonlinear

system. As a hypothetical case, if the WITT is attached to a spring with potential

V (s) = kbs
4/4, the equation governing the spring motion is then simply

d2s

dt2
= −kbs

3. (5.1)

As seen in Figure 8, this potential can excite frequencies higher than those of the forcing.

The caveat is that the coefficient kb must be very large. We now consider a physically

realisable system that takes advantage of such nonlinearities.

One way to realise such a nonlinear oscillator is to constrain the WITT to move on a

line or a plane, and attach it to a stiff spring which is at rest when the WITT is closest
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Figure 10. Horizontal spectrum of oscillation of the WITT on the horizontal rail in a

buoy excited by a superposition of waves of frequency 0.15 Hz, 0.3 Hz and 0.44 Hz. The

spring constant kb = 104 m−2 s−2.

to it as shown in Figure 9. The coordinates of the WITT on the buoy are

X = R sin(θ) + s cos(θ), (5.2a)

Y = R cos(θ)− s sin(θ) + z, (5.2b)

where z is the elevation of the buoy centre of mass, s is the distance along the plate, and

θ is the angle the buoy makes with the vertical. The potential for this system is then

V = mgY +
K

2

(√
s2 +R2 −R

)2
, (5.3)

where R is the length of the spring at rest, m is the mass of the WITT, and K is the

spring constant. The Lagrangian is then

L =
m

2

((
dX

dt

)2

+

(
dY

dt

)2
)

−mgY − K

2

(√
s2 +R2 −R

)2
. (5.4)

The proper way to derive the equations of motion would be to add these to the Lagrangian

of the buoy (given by (4.4), (4.5) and (4.8)), and derive equations for z, θ, and s. However,

if the WITT is much lighter than the buoy, we can, as an approximation, derive the

equation for s from the above Lagrangian and solve the new equation simultaneously

with the buoy equations, using the values obtained from the buoy equations for θ, z, and

their derivatives. The governing equation for s is then

d2s

dt2
=

d2z

dt2
sin(θ)−R

d2θ

dt2
+ g sin(θ) + s

(
dθ

dt

)2

− Ks

m

√
s2 +R2 −R√
s2 +R2

. (5.5)

When we simulate the buoy movement in a wave made out of 3 components, we obtain

the spectrum presented in Figure 10. We observe that there are indeed higher frequencies

that the input frequencies. These will allow the WITT to harvest energy more effectively.

Another way to obtain this frequency amplification would be to have a buoy that is

shaped in such a way that the floating restoring force does not vary linearly in z or θ,

but varies as a power of z or θ. The design of such a buoy is a possible object of future

study.
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6 Arched rail model

Another possible mechanism for how a nonlinear oscillator could be mounted inside a

buoy is through an arched rail. The goal of the arched rail concept (which could also be

implemented as an inverted pendulum) is to utilise energy from the slow oscillations of

the wave to move the WITT along a rail, then stop its motion with a spring that will

induce faster oscillations.

The WITT device is mounted to a convex rail mounted internally to the buoy with

springs on either end to constrain it. As the buoy pitches, the device moves to one side.

Then as the buoy pitches back, the arc of the rail keeps the device from moving until

the rail is horizontal. After this point the device slides along the rail and impacts the

other side. This impact kicks the pendulum within the device, generating electricity. The

stiffness of the spring can be tuned to the device to get the desired frequency and cushion

the impact. This storage and release of energy can be thought of as turning a simple,

slow sinusoidal wave into one that is more square-like. The three-dimesional analogue of

the arched rail would be a convex surface that the WITT moves around on, with springs

around its perimeter.

Figure 11 shows a simple diagram of the concept. For simplicity, we assume that the

centre of mass of the buoy is also the centre of the arc of the rail. The vertical motion

of the buoy is ignored here, but is likely to have a positive effect on this concept. The

friction of the device on the rail is modelled with a simple drag force. The parameters

used are given in Table 2.

In this model, we need to solve for θ, the angle of the WITT device along the rail,

and θB , the orientation of the buoy. The WITT is not in contact with the spring when

|θ| < θm, and is in contact for angles larger than θm. The orientation of the buoy is

assumed not to be influenced by the motion of the device and, is therefore, used as an

input to the following system of equations based on the solution of the buoy model in
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Table 2. The parameters used for the arched rail mechanism.

Parameter Description Value Units

R Radius of curvature of the rail 0.5 m

µ Rail friction coefficient 0.1 N s m−1

g Strength of gravity 9.8 m s−2

k Spring stiffness 1000 N m−1

D Spring/WITT device damping 10 N s m−1

θm Half the angle used for the rail 0.07 rad

Figure 12. The buoy’s orientation dictates when the device slides from one side to

the other.

§4. When |θ| < θm,

d2θ

dt2
=

1

R

(
g sin(θ + θB)− µ

dθ

dt

)
, (6.1)

while when |θ| ≥ θm,

d2θ

dt2
=

1

R

(
g sin(θ + θB)− k

(
θ − sgn(θ) θm

)
−D

dθ

dt

)
. (6.2)

These equations are solved in MATLAB using the package ifdiff [15] to handle

the system switching gracefully. As a first example, the system is tested with a regular

sinusiodal forcing input. Figure 12 shows the mechanism building a store of gravitational

potential energy and releasing it rapidly to generate higher frequencies.

Next, the output of the buoy mechanics simulation from §4 is used as an input. The

results of this can be seen in Figure 13. The device switches sides less frequently and

there is also a lot of motion in the buoy that does not influence the device’s motion along

the rail. It should be noted that the angles are taken in a reference frame rotating with

the buoy, so the additional changes in orientation are also superimposed on the WITT’s
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Figure 13. The buoy’s orientation is much more irregular with more realistic waves, and

the device does not switch sides in calm waters.
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Figure 14. Geometry of the buoy and double pendulum.

orientation. The curvature of the rail imposes a minimum buoy orientation angle for

which the device switches sides; this can be tuned depending how the buoy responds to

the ocean conditions.

7 Pendulum model

A third possible nonlinear oscillator, which we model in this section, is a double pendulum

attached to the top of a floating buoy. We envisage the WITT device attached to the

end of a single pendulum inside the buoy, and the internal pendulum of the device is

modelled as a second pendulum.

We show the geometry in Figure 14. We denote the height of the buoy by a, the length
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of the first pendulum by b, and the length of the second pendulum by c. The fixed parts of

the buoy are assumed to have moment of inertia J . The mass fixed to the first pendulum

is denoted by M , and that fixed to the end of the second pendulum is m.

We have some freedom to chose a, b and J , subject to reasonable constraints on the

size and weight of the buoy. The parameters c, M , and m are the pendulum length, fixed

mass, and pendulum mass of the WITT, so are fixed by the WITT design.

To describe the motion, we let σ be the angle the surface of the water makes with the

sea level, θ be the angle the buoy makes from vertical, β be the relative angle between

the buoy and the first pendulum, and ϕ be the relative angle between the extension of

the first pendulum and the second pendulum. We denote the position of first pendulum

by (ξ, η), and that of the second pendulum by (x, y), as shown in Figure 14.

We begin by determining the position of the pendulums based on the angles. From

this, we can determine the kinetic energy of the system and the potential energy of the

masses. We also prescribe a potential to ensure the motion of the first pendulum is limited

to ensure the system remains inside the buoy. Furthermore, we prescribe dissipative

interactions. We then non-dimensionalise the system and numerically solve the associated

Lagrange equations.

7.1 Model

We begin by expressing the position of the pendulums in terms of the angles θ, β, and

ϕ. The position of the first pendulum is given by

ξ = −a sin θ + b sin(θ + β), (7.1)

η = a cos θ − b cos(θ + β), (7.2)

and the position of the second pendulum is given by

x = −a sin θ + b sin(θ + β) + c sin(θ + β + ϕ), (7.3)

y = a cos θ − b cos(θ + β)− c cos(θ + β + ϕ). (7.4)

The kinetic energy of the first mass is given by

T1 =
1

2
M

[(
dξ

dt

)2

+

(
dη

dt

)2
]
, (7.5)

and the kinetic energy of the second mass is given by

T2 =
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2
]
. (7.6)

We also consider the rotational kinetic energy of the buoy:

TR =
1

2
J

(
dθ

dt

)2

, (7.7)

where J is the moment of inertia. Thus, the total kinetic energy is given by

T =
1

2
M

[(
dξ

dt

)2

+

(
dη

dt

)2
]
+

1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2
]
+

1

2
J

(
dθ

dt

)2

. (7.8)
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Similarly, the potential energy of the two masses are

V1 = Mgη, V2 = mgy. (7.9)

We model the potential energy of the buoy as a harmonic oscillator with potential

VR = k(θ − σ)2, (7.10)

where k is the ‘spring constant’. Recall the σ is the angle that the free-surface of the

ocean makes to the horizontal. In this way, the buoy has a preference to be perpendicular

to the surface of the water. Physically, the first pendulum’s motion is constrained by the

buoy. We therefore prescribe an additional potential U(β) to impose this limit the range

of β values. We assume this potential has the form

U(β) = E

((
1

β − βmax

)6

+

(
1

β + βmax

)6
)
, (7.11)

where E is a scaling factor and βmax is the maximum allowable β (a more sophisticated

model could use, for example, the so-called WCA potential traditionally used in molecular

dynamics [17]). Therefore, the total potential energy of the system is

V = V1 + V2 + VR + U(β) (7.12)

= Mgη +mgy + k(θ − σ)2 + U(β). (7.13)

We must also consider dissipative damping interactions. We assume the damping is of

the form

R =
1

2
γθ

(
dθ

dt
− dσ

dt

)2

+
1

2
γβ(β)

(
dβ

dt

)2

+
1

2
γϕ

(
dϕ

dt

)2

, (7.14)

where γθ, γβ , and γϕ are the associated damping coefficients of the buoy, first pendulum,

and second pendulum, respectively. We assume that the damping coefficients for the

buoy, γθ, and the second pendulum, γϕ, are constant. However, due to the fact that the

angle of the first pendulum, β, is limited, we take a more complicated damping term to

reflect that there will be more dissipation when β approaches βmax.

Firstly, suppose that the motion of the first pendulum is dominated by the potential

U(β), so then d2β/dt2 ∼ U ′(β). Then, upon multiplying by dβ/dt and integrating with

respect to t, we find

1

2

(
dβ

dt

)2

∼ C1 + U(β), (7.15)

where C1 denotes the energy of the system. Secondly, suppose that the motion of the first

pendulum is dominated by a dissipation function, f ′(β). Then d2β/dt2 ∼ f ′(β)dβ/dt.

By integrating, we find

dβ

dt
∼ f(β) +B, (7.16)

for a constantB. Equating these two expressions for dβ/dt from equations (7.15) and (7.16),
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Table 3. Dimensional parameters for the pendulum model of §7.

Symbol Description Value

a Height of buoy 1 m

b Length of first pendulum 0.9 m

c Length of second pendulum (internal WITT pendulum) 0.1 m

M Mass of first pendulum (fixed parts of WITT device) 10 kg

m Mass of second pendulum (internal WITT pendulum) 1 kg

J Moment of inertia of the buoy 10 kg m2

g Acceleration due to gravity 10 m s−2

k ‘Spring constant’ of buoy potential 100 N m−1

E Amplitude of theta potential 10−6 kg m2 s−2

βmax Maximum β value 0.3 rad

γθ Damping coefficient of θ 30 kg m2 s−1

C Damping coefficient of β 10 kg m2 s−1

γϕ Damping coefficient of ϕ 3× 10−4 kg m2 s−1

A Amplitude of σ oscillations 0.3 rad

ω Wave driving frequency 2π · 0.3 s−1

we find U(β) ∼ f(β)2, so we take the dissipation, γβ(β) = f ′(β), to be of the form

γβ(β) = C

∣∣∣∣∣ U ′(β)√
U(β)

∣∣∣∣∣ , (7.17)

where C is a constant and U(β) is given by (7.11).

Finally, for simplicity we assume the angle of the water σ follows the sinusoid

σ(t) = A sin(ωt), (7.18)

where A is the amplitude and ω is the angular frequency of the waves. The parameters are

summarised in Table 3. We now transition to the non-dimensionalisation of our problem.

7.2 Non-dimensionalisation

We scale the position coordinates with the length of the buoy, a, and time with the re-

ciprocal of the frequency of the prescribed forcing, ω. Using hats to denote dimensionless

variables, we have

ξ = aξ̂, η = aη̂, x = ax̂, y = aŷ, t =
1

ω
t̂. (7.19)

Upon scaling the kinetic and potential energy with the kinetic energy of the WITT
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device, (T, V ) = Ma2ω2(T̂ , V̂ ), we find

T̂ =
1

2

(dξ̂

dt̂

)2

+

(
dη̂

dt̂

)2
+

1

2
m1

[(
dx̂

dt̂

)2

+

(
dŷ

dt̂

)2
]
+

1

2
J1

(
dθ

dt̂

)2

, (7.20)

V̂ = g1η̂ +m1g1ŷ + k1 (θ − σ) + E1

(
1

(β − βmax)
6 +

1

(β + βmax)
6

)
, (7.21)

where the parameters are:

m1 =
m

M
, J1 =

J

Ma2
, g1 =

g

aω2
, k1 =

k

Ma2ω2
, E1 =

E

Ma2ω2
. (7.22)

Here, m1 is the mass ratio between the mass within the WITT to the WITT device,

J1 is the ratio of the moment of inertia of the buoy to that of the first pendulum, g1 is

the ratio of gravity to the natural acceleration scale, and k1 and E1 are k and E scaled

by the natural energy scale of the system, respectively. We scale the dissipation with

R = Ma2ω3R̂, then in dimensionless form, (7.14) reads

R̂ =
1

2
γθ1

(
dθ

dt̂
− dσ

dt̂

)2

+
1

2
γβ1

∣∣∣∣∣∣ Û
′(β)√
Û(β)

∣∣∣∣∣∣
(
dβ

dt̂

)2

+
1

2
γϕ1

(
dϕ

dt̂

)2

, (7.23)

where Û(β) is the dimensionless potential for β, and we have introduced the parameters

γθ1 =
γθ

Ma2ω
, γβ1 =

C

Ma2ω
, γϕ1 =

γϕ
Ma2ω

. (7.24)

We now construct the Lagrangian, L = T − V , of the system. The non-conservative

frictional damping of the pendulums are included via the dissipation function, R. Using

the Euler–Lagrange equations along with Rayleigh’s dissipation function [14] gives the

governing equations

d

dt̂

(
∂L
∂θ′

)
− ∂L

∂θ
+

∂R

∂θ′
= 0, (7.25a)

d

dt̂

(
∂L
∂β′

)
− ∂L

∂β
+

∂R

∂β′ = 0, (7.25b)

d

dt̂

(
∂L
∂ϕ′

)
− ∂L

∂ϕ
+

∂R

∂ϕ′ = 0, (7.25c)

where the prime denotes differentiation with respect to t̂. These equations are supple-

mented with initial conditions for the angle and the velocity of the angle. We assume

that initially all pendulums are at rest in their equilibrium positions, so take the initial

conditions to be

θ = β = ϕ =
dθ

dt̂
=

dβ

dt̂
=

dϕ

dt̂
= 0 at t = 0. (7.26)

7.3 Numerical Simulation

We now solve the system of three ODEs (7.25) numerically, subject to initial condi-

tions (7.26) and wave forcing given by (7.18), using Mathematica’s NDSolve. The di-
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Table 4. Dimensionless parameters for the pendulum model of §7.

Symbol Definition Description Typical value

m1 m/M Pendulum mass ratio 0.1

J1 J/Ma2 Moment of inertia mass ratio 1

g1 g/aω2 Normalised gravitational acceleration 2.8

k1 k/Ma2ω2 Normalised spring constant 2.8

E1 E/Ma2ω2 Normalised potential strength 2.8× 10−8

γθ1 γθ/Ma2ω Normalised damping coefficient of θ 1.6

γβ1 C/Ma2ω Normalised damping coefficient of β 0.53

γϕ1 γϕ/Ma2ω Normalised damping coefficient of ϕ 1.6× 10−5
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Figure 15. Angle of the buoy and two pendulums plotted against time, with the param-

eter values used given in Table 3. The forcing waves are of the form (7.18).

mensional parameter values used are given in Table 3, with corresponding dimensionless

parameters given in Table 4. We see in Figure 15a that the buoy and first pendulum

oscillate at approximately the same frequency, though the range of β is constrained by

the imposed potential (7.14). To effectively harvest energy, it is the pendulum inside the

WITT that needs to oscillate at a higher frequency, and we see from Figure 15b that it

is indeed the case that ϕ oscillates more rapidly than the buoy or WITT device itself.

So, even with the input, σ, being below the ideal frequency for the WITT, this double

pendulum setup inside the buoy can allow energy to be harvested more effectively than

if it were simply placed inside the buoy.

Next, we utilise the work done in §4 by using the buoy data to prescribe θ directly. This

will give more realistic results as it directly uses wave data as an input. As the dynamics

for θ(t) are given, we therefore only need to solve for the angles of the the two pendu-

lums, β and ϕ. The governing equations are given by (7.25b) and (7.25c), and as initial

conditions we again prescribe the pendulums to be at rest at their equilibrium positions.

In Figure 16 we see how the angles of the pendulums vary with time. We observe

that despite there being some higher frequency modes in the buoy movement, the first

pendulum oscillates at a relatively low frequency of approximately 0.3 Hz, which is lower

than the 1.2 Hz required to effectively harvest energy from the WITT device. However,
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Figure 16. A plot of the angle of the two pendulums plotted against time, where θ is

prescribed from the buoy motion calculations in §4. The parameter values used given in

Table 3.

the second pendulum oscillates more rapidly, at about 1 Hz. Although lower than the

1.2 Hz that is aimed for, is substantially higher than the input frequency.

These simulations have shown that having a double pendulum inside a buoy gives

the possibility of increasing the frequency that the WITT device oscillates. The physical

parameters used in these simulations are just estimates, and so changing them could give

rise to higher frequency oscillations, as discussed in the following subsection. One aspect

of the WITT device that has not been considered in this double pendulum example is

the power generation from the WITT itself. This generation is linked with the damping

coefficient to the second pendulum, and so while having a lower damping coefficient can

potentially increase the frequency of oscillation of the second pendulum, more work is

needed to understand the amount of damping needed for optimal power production.

7.4 Optimisation for pendulum model parameters

From Figure 16, we observe slow oscillations of the buoy and first pendulum in Figure 16a,

but fast oscillations of the second pendulum in Figure 16b. To understand which param-

eters from the model cause the fast oscillations in ϕ(t), we employ optimisation on the

parameters of the governing equations (7.25), where we define an objective function that

captures the contribution of high-frequency components to the oscillations in ϕ(t). We

use the discrete Fourier transform to identify these components. The objective function is

the sum of the squares of the high-frequency components (> 1.2 Hz) of the Fourier trans-

form of ϕ(t). By maximising this objective function using the Nelder–Mead optimisation

method [13], we identify the parameter values that maximise the fast oscillations in ϕ(t)

and potentially increase the amplitude of high-frequency oscillations. In this context,

“high-frequency oscillations” refer to the oscillations that occur at frequencies higher

than the specified threshold of 1.2 Hz and “amplitude” refers to the magnitude of these

oscillations.

The optimisation approach begins with an initial guess for the varying parameters,

we vary the dimensionless spring constant, k1, damping coefficients, γβ1 and γϕ1, and

driving frequency, ω. The driving frequency is determined by the wave frequency hitting

the device and while this may be externally controlled or influenced by natural wave

conditions, understanding its impact is crucial. This understanding is typically achieved
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Figure 17. Amplitude of frequency content of ϕ(t) before (left) and after (right) optimi-

sation, showing a significant increase in high-amplitude frequencies.

through sensitivity analysis, which identifies the most influential parameters that could

be done as a future work and then optimization fine-tunes these parameters to improve

system performance. Even if ω is not directly controllable, understanding its role can

inform design adjustments (for example, using a nonuniform buoy that effectively am-

plifies the driving frequency) or operational strategies to match typical wave conditions.

Optimising for ω also gives insight into how effective the pendulum mechanism will be

across different use cases of the WITT (i.e. different ocean and weather conditions).

The system of governing differential equations (7.25) is solved in python by using the

‘RK45’ method [9] for each iteration. The discrete Fourier transform of ϕ(t) is then com-

puted to analyse its frequency components and then the objective function is evaluated

for the solution. By iteratively adjusting the parameters to maximise the objective func-

tion, the optimisation process identifies the parameter values that increase high-frequency

oscillations in ϕ(t).

The results of this optimisation are illustrated in Figure 17. As we are interested in

high-frequency oscillations, we focus on frequencies between 1.2 Hz and 2.0 Hz. The

left plot shows the frequency content and its amplitude of ϕ(t) before optimisation, using

parameters given in Table 4, where the frequencies of interest exhibit amplitudes between

0.01 and 0.06. On the other hand, the right plot shows the results after optimisation,

where we see significant increase in amplitudes to the range of 0.6 to 1.1. This increase

shows the effectiveness of the optimisation process in maximising the high-frequency

oscillations. This indicates that the optimisation not only ensured that the oscillations

occurred at the desired higher frequencies (1.2 Hz) but also increased the magnitude

of these oscillations, making them stronger and more effective for energy harvesting

purposes.

The optimisation adjusted the spring constant, k1, damping coefficients, γβ1 and γϕ1,

and driving frequency, ω, to achieve the outcome. Using our experimental data, the op-

timised parameters were k1 = 2.93, γβ1 = 5.40, γβ1 = 1.51 × 10−5, and ω = 1.90,

indicating that increasing the spring constant and the damping coefficient for γβ1, while
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significantly reducing the damping coefficient for γϕ1 is crucial in maximising the high-

frequency oscillations. We also find, as expected, that a high driving frequency max-

imises these high-frequency oscillations, highlighting the importance of e.g. buoy design

and other mechanisms that may be combined with the pendulum to increase ω. In-

creasing the damping coefficient γβ1 stabilizes the low-frequency oscillations induced by

the ocean waves, reducing low-frequency interference. These low-frequency oscillations,

if left undamped, could create disturbances that interfere with the second pendulum’s

high-frequency oscillations. As a result, the overall system can achieve more stable and

focused high-frequency oscillations, enabling the WITT device to harvest energy more

effectively. The optimized driving frequency is ω = 1.90 ≈ 2π × 0.3, so the input waves

are of the frequency observed in the ocean wave data [8], reinforcing that this approach

could lead to the necessary high-frequency oscillations.

While not performed in this study, a detailed sensitivity analysis of the optimised

parameters would also be valuable for understanding the robustness of the design. Such

an analysis would involve systematically varying each parameter within a certain range

and observing the effects on the system’s performance. By quantifying how sensitive

the high-frequency oscillations are to changes in parameters like the spring constant,

damping coefficients, and driving frequency, we can identify which parameters are most

critical to maintain within tight tolerances. This information is essential for ensuring the

reliability and efficiency of the WITT device under different operating conditions and in

the presence of uncertainties [4, 5]. Finally, investigating the power generation capabilities

of the WITT device in more detail, particularly the relationship between the damping

coefficient and power production, is essential for optimising overall energy harvesting

efficiency. These future research and development efforts will be critical in fully realising

the capabilities of the WITT device and contributing to sustainable energy solutions.

8 Discussion and future work

One general difficulty with this project is that it is difficult to write down a set of

equations that describe the motion of the buoy and an internal mechanism. In the course

of the study group, most of the models that we produced were one- or two-dimensional,

since producing more complex models with potentially non-uniform geometry was beyond

the scope of the week. However, we hope the models we have produced provide suitable

proofs of concepts and idea generation based upon which more detailed computational

and experimental studies can be undertaken. There is also a vast array of potential ideas

for how the device could be mounted to the buoy.

There were some challenges that we did not address in the week. Firstly, we did not

address the design of the buoy. During the study group we assumed the buoy to have a

uniform cylindrical shape for mathematical convenience. In a real-world deployed system,

it may be possible to design a buoy in such a way that it accentuates the type of motion

required by the WITT device. Using a buoy that is non-uniform in shape, it may be

possible to create nonlinear effects that enhance the oscillations of the buoy as it is driven

by the ocean. However, designing such a buoy may require simulation of the whole system

using computational fluid dynamics and input by experts in marine engineering.

During the study group, it was also suggested that it may be possible to have a buoy
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that is filled with fluid, which sloshes as the buoy oscillates, adding to the instability of the

buoy. How this phenomena, known as the ‘free-surface effect’ [10], could be incorporated

into the design of a purposely unstable buoy, and whether it could prove impactful at the

scale of the buoy, is unknown to the authors, but could be a potential avenue of future

work. It may also be possible to design a buoy, which, similarly to the arced rail setup,

generates nonlinear effects by using the low frequency oscillations driven by the ocean

to build a store of potential energy, which is then rapidly released and converted into

higher frequency oscillations that can be harvested by the WITT as power.

There is also the open question of how other objects could be coupled to the buoy.

Obviously, the buoy will require some system to stop it drifting away from its deployment.

This is traditionally done by tethering the buoy to an anchor point. Hence, it could be of

interest to model how the tethering system interacts with the buoy, and whether a tether

can be designed in such a way that it augments the motion of the buoy, or even generates

the high frequency oscillations needed to effectively generate power. Other features could

be added to the buoy, such as sails to generate additional rotation, or devices to make

the buoy more stable if required, such as fins or outriggers. It may also be possible to

couple buoys together, so that there are interactions between their motion that may be

useful for power generation.

Since the goal of the device is to generate electrical power, we did not consider systems

that require electricity to function. However, it can be imagined that a buoy could be

designed that also charges a very small electrical system, that could respond to sea

or wind conditions or act in an emergency to move the system from an unfavourable

position, for example, being stuck on one side unable to be righted. However, this may

not be advisable, as the device should be small enough to power the sensors that it is

connected to and is not expected to generate large amounts of other power.

Potential extensions of this work may require input from a variety of specialists. In

particular, a simulation of the fluid mechanics of the buoy and surrounding waves, giv-

ing insight into how the device interacts with various sea states may be needed. There

may need to be optimisation of the parameters and properties of the buoy and device

mounting in order to have the best response to the expected sea conditions where it will

be deployed. Also, there remains the open question of how best to set up a system that

has the nonlinear behaviour we require, such as a cubic restoring force, and if there is a

mechanically simple and low-maintenance way to do this at the required scale.

9 Executive summary

During the study group we have explored the design of a wave energy converter based on

the WITT, a device that converts motion and rotation in all six degrees of freedom into

electrical power. The principle behind the wave energy converter is to attach the WITT

to a buoy in such a way that the WITT is able to generate power from the motion of the

buoy due to incoming waves. The present difficulty in deploying such a device effectively

is that the typical frequencies of ocean waves are an order of magnitude lower than the

frequency of oscillation required for the WITT to function optimally.

Our challenge is therefore to design a buoy, including the WITT, that will naturally

respond to low-frequency ocean waves by bobbing or otherwise oscillating the WITT at a
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higher frequency. Based on mathematical and physical reasoning, we posit that this effect

cannot be achieved through the bobbing motion of a uniformly-shaped buoy, nor through

a linear mechanism (for example, a simple spring or pendulum) within the buoy, as any

such mechanism will only reproduce the oscillation imposed by the ocean. Instead, we

infer that nonlinear dynamics are required to produce the desired motion of the WITT,

and explore several means that such dynamics may be achieved, taking the canonical

example of the Duffing oscillator as motivation.

We begin by writing and solving a mathematical model for a cylindrical buoy that

bobs and rolls in response to an idealised model of ocean waves. It may be possible to

achieve nonlinear bobbing dynamics and high-frequency oscillation by designing a buoy

that is not uniformly shaped. However, we deemed the problem of designing, simulating,

and optimising such a buoy to be beyond the scope of the study group, as such an inves-

tigation would likely require advanced computational physics software and/or additional

expertise, for example, of marine engineers. Instead, we focused on possible mechanisms

for mounting the WITT within the buoy, upon which the buoy motion found above can

be imposed during simulation.

We first explore a perpendicular spring oscillator, following the original setup of the

Duffing oscillator, where the WITT is constrained to move horizontally relative to the

buoy and attached to a fixed spring. By modelling and simulating this setup, we show

that the desired high-frequency response can be achieved. However, a very stiff spring is

required to elicit this response.

Second, we consider a setup where the WITT device moves on an arched rail within

the buoy, and collides with a spring at either end of the rail. As the buoy tips in response

to waves, the WITT slides from one end of the rail to the other and bounces rapidly

on the opposite spring, producing the high-frequency oscillation required once more.

Again, a simulation confirms that such a device is able to produce the required oscillation

frequencies in principle.

Third, we consider mounting the WITT on a double pendulum attached to a buoy

with the upper pendulum bound between two walls. Once more, we show as before that

such a setup is able to produce the desired results, and consider in addition how features

of such a design, such as pendulum length or relative mass, may be chosen to optimise

the frequency enhancement.

In conclusion, we have therefore obtained proof of concept for several mechanisms that

a WITT device within a buoy could effectively harness wave energy. With this said,

additional research and expert insight is required to determine how feasible these designs

are to implement in a way that is low-maintenance and scalable. Factors such as size,

cost, and durability of the buoy device must be taken into consideration. We also note

that there are many possible ways to achieve nonlinear dynamics that are beyond the

scope of our consideration, such as through non-uniform buoy design, mechanisms based

on the free-surface effect, a tethering system, or an electrical device within the buoy. The

continuation of the ideas presented in this report and the exploration of those that have

proved beyond our scope therefore present many promising avenues for future research.



26 Cairns & Ryan et al.

10 Key recommendations

Based on our work completed during the study group and summarised in the above

report, we make the following recommendations:

• Future research aimed at designing a buoy to convert wave energy via the WITT

should focus on achieving nonlinear dynamics. Such research may explore any of a

broad range of possible mechanisms or designs.

• Further research is required into designing and optimising a non-uniform buoy, in order

to achieve a nonlinear dynamical response to wave motion.

• Insight from marine engineers and computational physics software is required to better

understand the complex problem of nonuniform buoy motion.

• Mechanisms such as a perpendicular spring, arched rail, double pendulum, or adap-

tations of these pendulums, have the potential to provide the required frequency en-

hancement for the WITT to function as a wave energy converter. Further research is

required to determine the optimal design for such devices, and whether such a design

is practical and cost-effective to implement physically. This will require a combination

of mathematical modelling and engineering insight.
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